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Abstract

An extended finite element transfer matrix method, in combination with stiffness equation transfer, is
applied to dynamic response analysis of the structures under periodic excitations. In the present method,
the transfer of state vectors from left to right in a combined finite element-transfer matrix (FE-TM) method
is changed into the transfer of general stiffness equations of every section from left to right. This method
has the advantages of reducing the order of standard transfer equation systems, and minimizing the
propagation of round-off errors occurring in recursive multiplication of transfer and point matrices.
Furthermore, the drawback that in the ordinary FE-TM method, the number of degrees of freedom on the
left boundary be the same on the right boundary, is now avoided. A FESET program based on this method
using microcomputers is developed. Finally, numerical examples are presented to demonstrate the accuracy
as well as the potential of the proposed method for steady state vibration response analysis of structures.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The most powerful and most widely used numerical method in structural analysis is the finite
element (FE) method. The disadvantage of FE method, however, is that in the case of complex
structures, it is necessary to use a large number of nodes, resulting in very large matrices which
require large computers for their management and regulation. In order to reduce the size of the
matrices, some substructure techniques have been proposed which consist of keeping the
important degrees of freedom and suppressing the less important ones. Which degrees of freedom
in the substructure are to be retained depends on judgment and on the physical system. However,
this approach may lead to considerable inaccuracy if wrong degrees of freedom are suppressed.
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The combined finite element-transfer matrix (FE-TM) method was proposed for the first time
by Dokanish [1] for free plate vibration problems. Since the publication of Dokanish’s paper,
several authors have proposed refinements and extensions of this method [2–10]. This method has
the advantage of reducing stiffness matrix size to much smaller than that obtained with the FE
method and has been successfully applied to various linear and non-linear structural problems,
such as static structural analysis, natural frequencies of structure, transient and steady state
vibration response of structure, and non-linear dynamic response of structure. However, it is
pointed out that, in the standard FE-TM method, recursive multiplication of the transfer and
point matrices are main sources of round-off errors. Particularly, in calculating high resonant
frequencies or the response of a long structure, the numerical instability would be appeared and it
leads to an unwanted solution. The technique of exchanging state vectors and the riccati
transformation of state vectors have been, respectively, used in Refs. [5–8] for solving this
problem. In addition, the derivation of the transfer matrix from the dynamic stiffness ½G�i for strip
i requires the inversion of sub-matrix ½G12�i [1–3,5–9]. In a strict sense, the inversion is possible
only if ½G12�i is a square matrix. But, ½G12�i is a square matrix only if there are equal numbers of
nodes on the right boundary and on the left boundary, Therefore, most of the previous
formulations of the combined FE-TM method are only applicable to the models which have the
same number of nodes on all the substructure boundaries. Degen et al. have proposed a new FE-
TM method based on a mixed finite element formulation which alleviates the restriction on the
finite element model [4]. Bhutani and Loewy proposed a procedure for deriving a transfer matrix
by adding the zero elements to the state vectors which allows different number of nodes on the
right and on the left boundary [10]. However, in these methods, recursive multiplication of the
transfer and the point matrices are still necessary. The numerical instabilities that are inherent to
mixed methods in general, and to transfer methods in particular, must be circumvented. Even
though various techniques for treating these problems have been presented [5–8], researches on
this problem are as yet insufficient.
The purpose of this paper is to present an extended finite element–stiffness equation transfer

method (FE–SET) to overcome simultaneously both these two disadvantages in the ordinary FE-
TM method. In the present method, because the transfer of state vectors from left to right in the
FE-TM method is transformed into a transfer of general stiffness equations in every section from
left to right, the inverse matrix of sub-matrix ½G12�i of the FE-TM method becomes the inverse
matrix of sub-matrix ½G11�i of the present method. It is well known that ½G11�i is always a square
matrix whether the structures are rectangular or not. Since the numerical solution of a two-point
boundary value problem in the FE-TM method is converted into the numerical solution of an
initial value problem in the present method, the propagation of round-off errors occurring in
recursive multiplication of the transfer and point matrices is avoided. The present method is
applicable to different kinds of structural analysis in the same manner as the ordinary FE-TM
method. For simplicity, in the present paper, we only discuss the application of this method in
steady state vibration response analysis of structures under periodic excitations. Extension to
analyze other problems of structures is straightforward and will be presented in subsequent
publications.
Being different from common methods of computing steady state vibration response of

structures, the derivation of analytical procedures for the present method requires neither time
integration nor modal superposition. In the response analysis by modal superposition, one must
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first solve the free, undamped vibration problem to obtain the solution of the eigenvalues and
eigenvectors of the finite element assemblage. The distributed loading must then be expanded into
the series, each term of which has the form of an eigenvector. The present paper demonstrates a
method for solving vibration problems of the structure which does not require a knowledge of the
free vibration eigenvectors, the problems are solved only as an initial value problem in a
straightforward manner. Hence, the computational efficiency as well as accuracy is greatly
increased. The FESET program based on this method using a microcomputer is developed. Some
numerical examples of steady state dynamic problems are also given and their results compared
with those obtained with the ordinary finite element method.

2. A combined finite element-stiffness equation transfer method (FE–SET)

Without losing generality, we consider the plate shown in Fig. 1. It is divided into n strips and
each strip is subdivided into finite elements. The vertical sides dividing or bordering the strips are
called sections. It is apparent that the right of section i is the left of strip i:
Let fUgL

i ; fNgL
i and fUgR

i ; fNgR
i be the left and right steady forced vibration displacement and

force vectors of section i:
Similarly as in generalized riccati transformation of state vectors [11], we may assume that the

generalized stiffness equations which relate the force vectors to the displacement vectors on the
left of section i are given by

fNgL
i ¼ ½T �ifUgL

i þ fEgi ðiX2Þ: ð1Þ

2.1. Transfer at section i

The displacements are continuous across section i; so that we obtain

fUgR
i ¼ fUgL

i : ð2Þ
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Fig. 1. Subdivision of structure into strips and finite elements.
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Without losing generality, we suppose that there is no concentrated external load acting on
section i (concentrated external load acting on section i may be treated as generalized external
force on the left of strip i). Due to the continuity of force at section i; we obtain

fNgR
i ¼ 	fNgL

i : ð3Þ

Substituting Eqs. (2) and (3) into Eq. (1), we obtain

fNgR
i ¼ 	½T �ifUgR

i 	 fEgi: ð4Þ

Eq. (4) describes the relation between the forced vibration internal force vectors and the
displacement vectors on the right of section i:

2.2. Transfer in strip i

The discrete finite element equations of motion for a substructure i take the form [9]:

½M�if .Ugi þ ½C�if ’Ugi þ ½K�ifUgi ¼ fNgi þ fQgi; ð5Þ

where matrices ½M�i; ½C�i and ½K �i represent the mass, damping and stiffness properties of strip i;
respectively. fUgi; fNgi and fQgi are respectively the nodal displacement vector, internal force
vector and the generalized external force vector on the left and the right of strip i:When a periodic
force is acted on the structure, it may be represented by a set of harmonic forces through Fourier
transformation. Without losing generality, we consider one component of harmonic forces, fQgi;
fUgi and fNgi may be represented by

fQgi ¼ fQsgi sinot þ fQcgi cosot;

fUgi ¼ fUsgi sinot þ fUcgi cosot;

fNgi ¼ fNsgi sinot þ fNcgi cosot; ð6Þ

where o is the frequency of harmonic exciting forces.
Substituting Eq. (6) into Eq. (5), we obtain

½K � 	 o2½M� 	o½C�

o½C� ½K � 	 o2½M�

" #
i

Us

Uc

( )
i

¼
Ns

Nc

( )
i

þ
Qs

Qc

( )
i

: ð7Þ

For strip i; it includes the nodes on the right of section i and on the left of section i+1, so that
we have

fUsgi ¼ ½fUsg
R
i ; fUsg

L
iþ1�

T fUcgi ¼ ½fUcg
R
i ; fUcg

L
iþ1�

T

fNsgi ¼ ½fNsg
R
i ; fNsg

L
iþ1�

T fNcgi ¼ ½fNcg
R
i ; fNcg

L
iþ1�

T;

fQsgi ¼ ½fQsg
R
i ; fQsg

L
iþ1�

T fQcgi ¼ ½fQcg
R
i ; fQcg

L
iþ1�

T:

ð8Þ

Substituting Eq. (8) into Eq. (7), Eq. (7) is rearranged and repartitioned. We obtain

½G11� ½G12�

½G21� ½G22�

" #
i

fUgR
i

fUgL
iþ1

( )
¼

Nf gR
i

Nf gL
iþ1

( )
þ

Q1

Q2

( )
i

ð9Þ
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in which

fUgR
i ¼ ½fUsg

R
i ; fUcg

R
i �

T fUgL
iþ1 ¼ ½fUsg

L
iþ1; fUcg

L
iþ1�

T;

fNgR
i ¼ ½fNsg

R
i ; fNcg

R
i �

T fNgL
iþ1 ¼ ½fNsg

L
iþ1; fNcg

L
iþ1�

T;

fQ1gi ¼ ½fQsg
R
i ; fQcg

R
i �

T fQ2gi ¼ ½fQsg
L
iþ1; fQcg

L
iþ1�

T:

ð10Þ

By expanding Eq. (9), we obtain

½G11�ifUgR
i þ ½G12�ifUgL

iþ1 ¼ fNgR
i þ fQ1gi; ð11Þ

½G21�ifUgR
i þ ½G22�ifUgL

iþ1 ¼ fNgL
iþ1 þ fQ2gi: ð12Þ

Substituting Eq. (4) into Eq. (11), we obtain

fUgR
i ¼ 	 ð½G11� þ ½T �Þ	1i ½G12�ifUgL

iþ1

þ ð½G11� þ ½T �Þ	1i ð	fEg þ fQ1gÞi: ð13Þ

Substituting Eq. (13) into Eq. (12), we have

fNgL
iþ1 ¼ ½T �iþ1fUgL

iþ1 þ fEgiþ1; ð14Þ

where

½T �iþ1 ¼ ½G22�i 	 ½G21�ið½G11� þ ½T �Þ	1i ½G12�i; ð15Þ

fEgiþ1 ¼ ½G21�ið½G11� þ ½T �Þ	1i ðfQ1g 	 fEgÞi 	 fQ2gi: ð16Þ

Eq. (14) represents the relationships for the internal force vectors and the displacement vectors
on the left of section i þ 1:

2.3. Transfer of entire structure

Supposing ½T �2 and fEg2 are known, using Eqs. (15) and (16), ½T � and fEg are transferred from
the left of the second section to the right of the total structure. Hence we have

fNgL
nþ1 ¼ ½T �nþ1fUgL

nþ1 þ fEgnþ1: ð17Þ

By considering boundary conditions, the known force or displacement variables on the right
hand boundary of the total structure are substituted into Eq. (17) to determine the unknown force
or displacement variables. After the force and displacement vectors on the right hand boundary of
the total structure are solved, the force and displacement vectors at any section i are calculated by
Eqs. (13) and (4).
It is noteworthy that the transfer matrix ½T � for the ordinary FE-TM method [9] is replaced by

the transfer matrix ½T �nþ1 in Eq. (17) for the FE–SET method. The dimension of the matrix ½T �nþ1
is only half that of the matrix ½T �: In the FE–SET method, The storage requirements would only
about half of the FE-TM method. In addition, the transfer matrix ½T �nþ1 is obtained by
recursively using Eqs. (15) and (16), and not by recursive multiplication of transfer and point
matrices, so the propagation of round-off errors occurring in recursive multiplication of transfer
and point matrices is avoided.
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2.4. The method of determining ½T �2 and fEg2

In Eq. (1), let i be 2, we obtain

fNgL
2 ¼ ½T �2fUgL

2 þ fEg2: ð18Þ

For strip 1, by expanding Eq. (9), we have

½G11�1fUgR
1 þ ½G12�1fUgL

2 ¼ fNgR
1 þ fQ1g1; ð19Þ

½G21�1fUgR
1 þ ½G22�1fUgL

2 ¼ fNgL
2 þ fQ2g1: ð20Þ

It is obvious that fUgR
1 and fNgR

1 may be determined by using the left hand boundary
conditions of the total structure.

2.4.1. Displacement boundary condition
It is obvious that fUgR

1 is known in a displacement boundary condition, hence by Eq. (20), we
obtain

fNgL
2 ¼ ½G22�1fUgL

2 þ ½G21�1fUgR
1 	 fQ2g1: ð21Þ

Comparing with Eq. (18), we have

½T �2 ¼ ½G22�1; ð22Þ

fEg2 ¼ ½G21�1fUgR
1 	 fQ2g1: ð23Þ

2.4.2. Force boundary condition

It is obvious that fNgR
1 is known in a force boundary condition, hence fUgR

1 is obtained from
Eq. (19).

fUgR
1 ¼ 	½G11�	11 ½G12�1fUgL

2 þ ½G11�	11 ðfNgR
1 þ fQ1g1Þ: ð24Þ

Substituting the fUgR
1 into Eq. (20), we have

fNgL
2 ¼ ð½G22�1 	 ½G21�1½G11�	11 ½G12�1ÞfUgL

2 þ ½G21�1½G11�	11 ðfNgR
1 þ fQ1g1Þ 	 fQ2g1: ð25Þ

Comparing with Eq. (18), we have

½T �2 ¼ ½G22�1 	 ½G21�1½G11�	11 ½G12�1; ð26Þ

fEg2 ¼ ½G21�1½G11�	11 ðfNgR
1 þ fQ1g1Þ 	 fQ2g1: ð27Þ

2.4.3. Mixture boundary condition

In mixture boundary condition, we suppose fUgR
1 ¼ ½fU 0gR

1 ; fU 00gR
1 �

T and the corresponding
fNgR

1 ¼ ½fN 0gR
1 ; fN 00gR

1 �
T: If fU 0gR

1 is unknown and fU 00gR
1 is known, the corresponding fN 0gR

1 is
known and fN 00gR

1 is unknown. For strip 1, Eq. (9) is rearranged and repartitioned, so we have

½H11� ½H12� ½H13�

½H21� ½H22� ½H23�

½H31� ½H32� ½H33�

2
64

3
75

fU 0gR
1

fU 00gR
1

fUgL
2

8><
>:

9>=
>; ¼

fN 0gR
1

fN 00gR
1

fNgL
2

8><
>:

9>=
>;þ

fQ0
1g1

fQ00
1g1

fQ2g1

8><
>:

9>=
>;: ð28Þ
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Expanding Eq. (28) and solving relations for fNgL
2 and fUgL

2 ; we obtain

½T �2 ¼ ½H33� 	 ½H31�½H11�	1½H13�; ð29Þ

fEg2 ¼ ½H31�½H11�	1 fN 0gR
1 þ fQ0

1g1
� �

þ ½H32�fU 00gR
1

	 ½H31�½H11�	1½H12�fU 00gR
1 	 fQ2g1: ð30Þ

3. Numerical examples

In order to investigate the accuracy and the computational efficiency of our method, we
developed a program FESET based on this method on a microcomputer. Many numerical
examples can be given using the FE–SET approach. In this section, a vibrating Euler beam is first
analyzed to obtain its natural frequencies and forced vibration displacements for checking
purposes, and then the forced response of the trapeziform and circle plates is given to illustrate the
validity of the proposed method.
A uniform rectangular beam with simple supports, as shown in Fig. 2, was modulled with eight

elements. The beam has a modulus of elasticity E ¼ 1:5� 105 MPa; and density r ¼ 8000 Kg=m3:
The exciting force FðtÞ ¼ F0 sinotðF0 ¼ 400NÞ is applied at the middle point of the beam. Using
the proposed method, the response at the nodes of interest to a forced harmonic input versus
forcing frequency can be easily obtained. In Table 1 the first three natural frequencies obtained by
using the subspace iteration method [12] for a full eigenvalue problem are compared with the first
two peak resonances calculated using the proposed FE–SET method. For the first and the third
natural frequency there seems no difference of results between the two approaches. Because the
second modal generalized force is zero in our example, the second peak resonance of the present
method cannot be obtained. It is found that the accuracy of the peak resonance depends on the
frequency step size. In order to save computational time and obtain accurate solution, one can
first use a coarse step size to determine the frequency ranges of interest, and then repeat the
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Fig. 2. A simply supported beam.

Table 1

Natural frequencies of simply supported beam

Peak resonance using FE-SET (rad/s) Solution of subspace iteration method (rad/s)

987–988 987.2

3948.8

8884–8885 8884.9
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calculations with a smaller size near the desired response peaks to obtain more accurate results.
For o ¼ 980 rad=s; the computed results of the vibration displacements are listed in Table 2. The
solutions of the FE method using the modal superposition approach and the theoretical exact
solutions are also listed in Table 2. In the FE method, the same elements as those used in the FE–
SET method are employed. A comparison indicates that very little difference exists among the
three results.
The second example is to obtain the forced response of a cantilever trapeziform plate under the

harmonic uniform pressure as shown in Fig. 3, where the physical parameters of the plate are as
follows: length l ¼ 150 cm; width a ¼ 90 cm; b ¼ 60 cm; thickness t ¼ 0:635 cm; a specific weight
g ¼ 78 KN=m3; the Possion ratio n ¼ 0:3; modules of elasticity E ¼ 2:0� 105 MPa; Rayleigh
damping constant a ¼ 0:1; b ¼ 0:02 and harmonic uniform pressure qðtÞ ¼ 800 sinotKN=m2:
The plate is divided into 15 substructures which are divided into many triangular plate elements.
The first three peak resonances calculated by the proposed FE–SET method and the first three
natural frequencies obtained by the subspace iteration method [12] are listed in Table 3. From the
above results, it can be seen that the computed results by the presented method are almost the
same as those obtained by using the subspace iteration method. For o ¼ 837 rad=s; the vibration
displacement at the middle point of the section b is listed in Table 4. The solutions of the finite
element method using the modal superposition approach are also listed in Table 4. From the

ARTICLE IN PRESS

Table 2

Vibration displacements at the nodal points of the simply supported beam (cm)

Number of node 1 2 3 4 5 6 7 8 9

Exact solution 0 2.79 5.16 6.75 7.30 6.75 5.16 2.79 0

FE Solution 0 2.79 5.14 6.70 7.25 6.70 5.14 2.79 0

FE-SET Solution 0 2.79 5.14 6.73 7.28 6.73 5.15 2.79 0

Fig. 3. Cantilever trapeziform plate model.
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results in Table 4 it can be seen that the solution given by the FE–SET method coincide
completely with that obtained from using the FE method (mode number=20). A comparison of
computation time shown in Table 4 indicates that a computation efficiency of the present method
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Table 3

Natural frequencies of the cantilever plate

Peak resonance using FE-SET (rad/s) Solution of subspace iteration method (rad/s)

16–17 16.5

74–75 74.5

94–95 94.4

Table 4

Vibration displacement at the middle point of the section b for the cantilever plate

Method by applying FE FE FE FE FE-SET

Mode number 5 10 15 20

Displacement (mm) 15.89 19.16 18.84 18.86 18.86

Computation time (s) 10 16 28 41 11

Fig. 4. Clamped circle plate model.
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is higher than that of the FE method. In this example, the number of nodes on the left boundary is
10, and that on the right boundary is 7. Most of the ordinary FE-TM method can only be applied
to the chain-like structure which has equal number of degrees of freedom on the boundaries, so
the ordinary FE-TM method [2–3,9] cannot be used in this case. The present method has
potentially wider application than the ordinary FE-TM method. In comparison with the FE
method, The FE program computes frequency response via a modal analysis whereas the present
method allows a direct computation of frequency response. In addition, the size of the matrix in
the FE method is much larger than that in the present method. The computational efficiency of
our method is higher than that of the FE method.
In the third example, we analyzed a clamped circle plate under a uniform harmonic pressure as

shown in Fig. 4. The physical parameters of the plate are as follows: radius R ¼ 1:4 m; thickness
t ¼ 1 cm; modules of elasticity E ¼ 2:0� 105 MPa; a specific weight g ¼ 78 KN=m3; Rayleigh
damping constant a ¼ 0:001; b ¼ 0:002; the Possion ratio n ¼ 0:3 and a uniform harmonic
pressure qðtÞ ¼ 100 sin 314tKN=m2: It is shown in Fig. 4 that a quarter of the plate is divided into
seven substructures that are divided into many triangular plate elements. Table 5 compares the
harmonic vibration displacement at the central point of the plate resulting from the employment
of both the FE method and the present method. Similar results as in Example 2 are obtained.

4. Conclusion

A combination of the finite element method and the stiffness equation transfer method for
solving the steady state vibration response problems is proposed and illustrated by three
examples. A FESET microcomputer program based on this method is developed. Some numerical
examples presented in this paper show that the proposed method can be successfully applied to
the steady state vibration response analysis of structures with random boundaries. In the present
method, the transfer of state vectors from left to right in the ordinary FE-TM method is changed
into the transfer of general stiffness equations of every section from left to right. This method has
the advantages of reducing the order of standard transfer equation systems, and minimizing the
propagation of round-off errors occurring in recursive multiplication of transfer and point
matrices. It also has an additional advantage in that one does not need to calculate so many
natural frequencies. Furthermore, the drawback that in the ordinary FE-TM method, the number
of degrees of freedom on the left boundary be the same on the right boundary, is now avoided.
Hence, the present method has potentially wider application than the ordinary FE-TM method.
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Table 5

Vibration displacement at the central point of the circle plate

Method by applying FE FE FE FE FE-SET

Mode number 5 10 15 20

Displacement (mm) 33.18 32.01 31.04 31.03 31.03

Computation time (s) 5 8 14 30 7
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